Humacyte Highlights Preclinical Data of Bioengineered Blood Vessel


RESEARCH TRIANGLE PARK, N.C.—Humacyte, Inc. presented the results of foundational U.S. preclinical studies of its investigational bioengineered blood vessel at the American Society of Nephrology’s (ASN) ‘Kidney Week 2013’ Annual Meeting in Atlanta.

The scientific presentation–by Shannon L. M. Dahl, PhD, co-founder and vice president, Technology and Pipeline Development, Humacyte–summarized U.S. preclinical data of the company’s investigational bioengineered vessel technology, which is being developed for use as the first off-the-shelf, human-derived, artificial blood vessel. The presentation’s title was ‘Preclinical Dataset Supports Initiation of Clinical Studies for Bioengineered Vascular Access Grafts.’ Co-authors were: Jeffrey H. Lawson, MD, PhD; Heather L. Prichard, PhD; Roberto J. Manson, MD; William E.Tente, MS; Alan P. Kypson, MD; Juliana L. Blum, PhD; and Laura E. Niklason, MD, PhD.

Potential of Investigational Bioengineered Vessels Explored in Pre-Clinical Studies

These U.S. preclinical data suggest that the investigational bioengineered vessel may be associated with lowered vessel clotting and incorporation with animal model tissues. This investigational technology is being developed with the goal of pursuing approval for use in patients with chronic kidney disease (CKD), a major global health problem affecting 26 million Americans and around 40 million people in the European Union (EU). Individuals who progress to end-stage renal disease (ESRD) require renal replacement therapy (hemodialysis or kidney transplant); more than 380,000 patients currently require hemodialysis in the U.S., and some 250,000 patients require hemodialysis or have had kidney transplants in the EU.

In ESRD patients, synthetic vascular grafts are prone to wall thickening, which results in graft clotting. Such clotting is the major cause of graft failures. As a result, ESRD patients experience frequent hospitalization and re-operation. The investigational bioengineered vessels, if successfully developed and approved by regulatory authorities, could offer the potential for significant cost savings to the healthcare system if approved for use in patients who require vascular access for ESRD. These investigational bioengineered vessels represent a research and development milestone in the field of vascular tissue engineering, as this technology could have the potential to help reduce or avoid surgical interventions and hospitalizations for patients with ESRD.

First off-the-Shelf Investigational Bioengineered Vessel in Clinical Studies

“In the preclinical studies described, our investigational bioengineered vessels were repopulated with cells and remodeled like living tissue in the animal model,” said Dahl. “These investigational bioengineered vessels are produced using donated human vascular cells and then go through a process that is intended to decellularize the investigational vessels to remove the donor identity from the newly created vessels. This process is designed to produce investigational human grafts with the potential to be implanted into any patient at the time of medical need, enabling our investigational product to become the first truly off-the-shelf engineered graft to have moved into clinical evaluation. Demonstrating safety and performance in patients with end-stage renal disease could set the stage for follow-on development of our technology in other vascular procedures, such as replacement or bypass of diseased vessels, of vessels damaged by trauma, or for other vascular procedures.”

In 2012, Humacyte submitted an Investigational New Drug (IND) application to the U.S. Food and Drug Administration to conduct a multi-center U.S. clinical trial, involving up to 20 patients across three sites. In this trial, which will assess safety and performance of the investigational bioengineered vessels to provide vascular access for hemodialysis in ESRD patients, the first investigational bioengineered vessel was implanted in the arm of a kidney dialysis patient at Duke University Hospital in June, 2013.

European studies are already underway; as part of a multi-center study in Poland, the first patients were implanted with the investigational vessels in December 2012 and the vessels were first used for hemodialysis in February 2013. The primary endpoints of the study in Poland are safety, tolerability, and patency, to be examined at each visit within the first six months after graft implantation (see

Studies Planned in Additional Patient Populations

Humacyte also will carry out a study in Poland to test safety and performance of the investigational bioengineered vessel as an above-knee bypass graft in patients with peripheral arterial disease (PAD). The study began in October of this year.

First-in-human interim study results for the investigational bioengineered vessel technology from Humacyte will be presented on Wednesday, November 20, 2013, at the American Heart Association Scientific Sessions (abstract) in Dallas.

comments powered by Disqus